◄ 41:6
41. írás
41:8 ►

A helyi világegyetem fizikai sajátosságai

7. A napenergia forrásai

41:7.1

Sok nap belső hőmérséklete, még a ti napotoké is, sokkal magasabb, mint azt általában gondoljátok. Egy nap belsejében gyakorlatilag nem létezik teljes atom; mindet többé-kevésbé szétroncsolta az erős röntgensugár-bombázás, mely az ilyen nagy hőmérsékletek velejárója. Függetlenül attól, hogy milyen anyagi elemek jelenhetnek meg egy nap külső rétegeiben, a belsejében lévők mind nagyon hasonlóvá válnak a pusztító röntgensugarak bomlasztó hatása révén. A röntgensugárzás az atomi létezés nagy egységesítője.

41:7.2

A napotok felszíni hőmérséklete majdnem 3300 fok, de gyorsan növekszik, amint a belseje felé haladunk, míg a középső részein eléri a hihetetlen, körülbelül 19.400.000 fok körüli értéket. (Mindeme hőmérsékletadatok a ti Celsius fokbeosztásotokon értendők.)

41:7.3

Mindezek a jelenségek hatalmas energiafelhasználást jeleznek, és a napenergia forrásai, a fontosságuk sorrendjében említve, a következők:

41:7.4

1. Az atomok és később az elektronok megsemmisülése.

41:7.5

2. Az elemek átalakulása, beleértve az így felszabadult energiák radioaktív csoportját is.

41:7.6

3. Bizonyos térenergiák felhalmozódása és átadódása.

41:7.7

4. Téranyagok és meteorok, melyek szüntelenül az izzó napokba zuhannak.

41:7.8

5. A nap összehúzódása; a nap hűlése és az ezt követő összehúzódása néha több energiát és hőt eredményez, mint a téranyag által termelt hőmennyiség.

41:7.9

6. Magas hőmérsékleten a gravitációs hatás bizonyos keringő erőteret sugárzó energiává alakít.

41:7.10

7. Újból befogott fény és egyéb anyag, melyeket a nap magába visszahúzott, miután azok kiléptek belőle, valamint ide tartoznak az ezekkel együtt befogott, a napon kívülről származó egyéb energiák is.

41:7.11

Létezik a forró (néha több millió fokos) gázoknak egyfajta szabályozó takarója, mely beburkolja a napokat, és amely kiegyensúlyozza a hőveszteséget és más módon is akadályozza a hőteljesítmény veszélyes ingadozásait. A nap tevékeny élettartama alatt a 19.400.000 fokos belső hőmérséklet nagyjából végig megmarad, függetlenül a külső hőmérséklet folyamatos esésétől.

41:7.12

Tekinthetitek a 19.400.000 fokos hőt a meghatározott gravitációs nyomásokkal együtt úgy, mint a villamos forráspontot. Ilyen nyomás alatt és ilyen hőmérsékleten minden atom felbomlik és szétesik elektronjaira és egyéb kezdeti összetevőire; még az elektronok és az ultimatonok egyéb társulásai is felbomolhatnak, azonban az ultimatonok szétbontására a napok nem képesek.

41:7.13

E naphőmérsékletek az ultimatonokat és az elektronokat óriási sebességre gyorsítják fel, az utóbbiak esetében legalábbis annyira, hogy az ilyen körülmények közötti folyamatos fennmaradásuk biztosított legyen. Megérthetitek mit jelent a magas hőmérséklet az ultimaton- és elektron-működés felgyorsítása szempontjából, ha időt szakítotok annak átgondolására, hogy egy csepp közönséges víz több mint egy milliárd-billió atomot tartalmaz. Ez megfelel a több mint száz lóerő által két év alatt folyamatosan kifejtett teljesítmény energiamennyiségének. A naprendszeri nap által másodpercenként leadott összes hő tehát elegendő lenne az Urantia összes világtengere vizének mindössze egyetlen másodperc alatti felforralásához.

41:7.14

Kizárólag azok a napok képesek örökké ragyogni, amelyek a világegyetemi energia főáramainak közvetlen csatornáiban működnek. Az ilyen napkemencék meghatározatlan ideig világítanak, mert képesek pótolni az elvesztett anyagmennyiséget a térenergia és hasonló keringő energia felvételével. De az ilyen főcsatornáktól távol eső napok sorsa az energia elvesztése—a fokozatos kihűlés és végül a kiégés.

41:7.15

Az ilyen halott és haldokló napok megfiatalodhatnak összeütközések hatására vagy újratöltődhetnek a tér bizonyos, nemfénylő energiaszigetei révén vagy a közeli kisebb napok, naprendszerek gravitációs kifosztásán keresztül. A halott napok többsége ilyen és más evolúciós módokon kel új életre. Amelyek nem töltődnek így fel, azoknak az a sorsa, hogy tömegrobbanás által szétessenek, amikor a gravitációs sűrűsödés eléri az energianyomás ultimatoni sűrűsödésének határértékét. Az így eltűnő napokból az energia legritkább formája válik, mely kiválóan alkalmas az egyéb, kedvezőbb helyzetű napok energiával való ellátására.


◄ 41:6
 
41:8 ►