◄ 41:2
Fascicule 41
41:4 ►

Aspects physiques de l’univers local

3. Nos associés stellaires

41:3.1

Plus de deux-mille soleils éclatants déversent de la lumière et de l’énergie dans Satania, et votre propre soleil y est un globe embrasé moyen. Parmi les trente soleils les plus proches de vous, trois seulement sont plus brillants. Les Directeurs de Pouvoir d’Univers déclenchent les courants spécialisés d’énergie qui jouent entre les étoiles individuelles et leurs systèmes respectifs. Ces fournaises solaires, ainsi que les géants obscurs de l’espace, servent de relais aux centres de pouvoir et aux contrôleurs physiques pour concentrer et orienter efficacement les circuits d’énergie des créations matérielles.

41:3.2

Les soleils de Nébadon ne diffèrent pas de ceux des autres univers. La composition matérielle de tous les soleils, iles obscures, planètes, satellites et même météorites, est tout à fait identique. Le diamètre moyen des soleils est d’environ 1 600 000 kilomètres ; celui de votre globe solaire est un peu inférieur. La plus grande étoile de l’univers, le nuage stellaire d’Antarès, a 450 fois le diamètre de votre soleil et 60 000 000 de fois son volume. Mais la place abonde pour loger tous ces énormes soleils. Par comparaison, ils ont les coudées tout aussi franches dans l’espace qu’une douzaine d’oranges circulant à l’intérieur d’Urantia si la planète était creuse.

41:3.3

Quand une roue-mère nébuleuse projette des soleils trop grands, ceux-ci ne tardent pas à se fractionner ou à former des étoiles doubles. À l’origine, tous les soleils sont purement gazeux, bien qu’ils puissent exister passagèrement plus tard à l’état semi-liquide. Lorsque votre soleil atteignit cet état quasi liquide de pression supergazeuse, il n’était pas assez grand pour se scinder par l’équateur, ce qui est l’un des modes de formation des étoiles doubles.

41:3.4

Quand les sphères ignées ont moins du dixième de la taille de votre soleil, elles se contractent, se condensent et se refroidissent rapidement. Quand les soleils ont plus de trente fois sa taille – ou plutôt trente fois son contenu global de matériaux effectifs – ces soleils se scindent promptement en deux corps séparés qui peuvent soit devenir les centres de nouveaux systèmes, soit rester dans l’emprise de leur champ de gravité réciproque et tourner autour d’un centre commun, conformément à un type d’étoiles doubles.

41:3.5

La plus récente des éruptions cosmiques majeures dans Orvonton fut l’extraordinaire explosion d’une étoile double dont la lumière atteignit Urantia en 1572. La conflagration fut si intense que l’explosion était clairement visible en plein jour.

41:3.6

Les étoiles ne sont pas toutes des solides, mais beaucoup des plus anciennes en sont. Quelques-unes des étoiles rougeâtres qui projettent de faibles lueurs ont acquis, au centre de leurs énormes masses, une densité que l’on peut exprimer en disant que, si un centimètre cube en était transporté sur Urantia, il y pèserait quelque 170 kg. La pression colossale, accompagnée de la perte de chaleur et d’énergie circulante, a eu pour résultat de resserrer de plus en plus les orbites des unités matérielles de base jusqu’à leur faire approcher maintenant de près l’état de condensation électronique. Ce processus de refroidissement et de contraction peut se poursuivre jusqu’au point critique limite d’explosion de la condensation ultimatonique.

41:3.7

La plupart des soleils géants sont relativement jeunes ; la plupart des étoiles naines sont vieilles, mais pas toutes. Les naines résultant de collisions peuvent être très jeunes et peuvent briller d’une intense lumière blanche sans avoir jamais connu le stade rouge initial de l’éclat de la jeunesse. Les soleils très jeunes et les soleils très vieux brillent habituellement d’une lumière rougeâtre. La teinte jaune indique une jeunesse relative ou bien l’approche de la vieillesse, mais la brillante lumière blanche est le signe d’une vie adulte robuste et longue.

41:3.8

Les soleils adolescents ne passent pas tous, du moins visiblement, par le stade des pulsations, mais, en regardant dans l’espace, on peut observer beaucoup d’étoiles assez jeunes dont les gigantesques poussées respiratoires demandent deux à sept jours pour compléter leur cycle. Votre propre soleil porte encore des vestiges décroissants des puissants gonflements du temps de sa jeunesse, mais la période de pulsation primitive de trois jours et demi s’est allongée pour devenir le présent cycle de onze ans et demi des taches solaires.

41:3.9

Les étoiles variables ont de nombreuses origines. Chez quelques étoiles doubles, les marées causées par les rapides changements de distance entre les deux corps qui tournent sur leurs orbites occasionnent aussi des fluctuations périodiques de lumière. Ces variations de gravité produisent des flambées régulières et récurrentes, de même que la captation de météores produit, par addition de matière énergétique à la surface, un éclair relativement soudain dont la lumière s’atténue rapidement et laisse le soleil reprendre son éclat normal. Il arrive qu’un soleil capte un courant de météores dans une ligne d’opposition gravitationnelle amoindrie et que des collisions occasionnelles causent des flamboiements stellaires, mais la majorité de ces phénomènes est entièrement due à des fluctuations internes.

41:3.10

Dans un groupe d’étoiles variables, la période de fluctuation de la lumière dépend directement de la luminosité. La connaissance de ce fait permet aux astronomes d’utiliser ces soleils comme phares universels, ou points de mesure précis, pour mieux explorer les amas d’étoiles lointains. Par cette technique, il est possible de mesurer des distances stellaires avec une grande exactitude jusqu’à plus d’un million d’années-lumière de distance. De meilleures méthodes pour mesurer l’espace et une technique améliorée des télescopes permettront, un jour, de déceler plus complètement les dix grandes divisions du superunivers d’Orvonton. Vous reconnaitrez au moins huit de ces immenses secteurs comme d’énormes amas d’étoiles assez symétriques.


◄ 41:2
 
41:4 ►